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(57) ABSTRACT

Embodiments of the present invention utilize a closed-loop
feedback control system to ensure accurate drug delivery.
This control system may, for example, utilize a flow sensor to
measure the volume of delivery and an intelligent control
algorithm to anticipate and compensate for overdoses and
underdoses. Feedback control systems in accordance here-
with can be applied to any piston- or plunger-driven pump
system utilizing sensors that measure flow directly or indi-
rectly. In some embodiments, adjustments are made based on
the flow “tail” that occurs in a piston- or plunger-type pump as
relaxation of the plunger material continues to push fluid out
of'the drug reservoir; this residual flow eventually ceases after
the plunger returns to its natural state.

14 Claims, 8 Drawing Sheets
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DRUG-DELIVERY PUMP WITH
INTELLIGENT CONTROL

CROSS-REFERENCE TO RELATED
APPLICATIONS

This is a continuation-in-part of U.S. Ser. No. 12/858,808,
filed on Aug. 18, 2010, and also claims priority to, and the
benefits of, U.S. Ser. No. 61/704,946, filed on Sep. 24, 2012;
the entire disclosures of these applications are hereby incor-
porated by reference.

TECHNICAL FIELD

The present invention relates to drug-delivery devices, and
in particular to control of piston- or plunger-driven drug-
pump devices for accurate dosing.

BACKGROUND

Subcutaneous drug delivery is employed for treatment of
conditions such as diabetes, and typically involves modalities
such as syringe injections, pre-filled pen injectors and patient-
filled portable insulin pumps. Pre-filled pen injectors provide
accurate manual insulin dosing using, for example, a pre-
filled, bubble-free glass cartridge. Since the glass cartridges
are bubble-free, the priming process is simple for the patient.
Since the injection is performed manually, however, patient
compliance is a challenge; the patient may not observe proper
injection timing and/or fail to follow the dosing prescription.
Portable insulin pumps can provide fully controlled insulin
delivery, improving patient compliance, and reduced num-
bers of injections (once every 3 days, for example) and pro-
grammable dosing schedules enhance the patient’s quality of
life. Patch pumps with low pump profiles can be attached to
the patient’s skin without interfering with daily activities such
as including showering, sleeping, and exercising. Because
these pumps are typically filled by patients, however, risks
arise during the priming procedure. Improperly primed res-
ervoirs may contain large air bubbles and cause the pump to
inject too much air into the subcutaneous tissue, which poses
serious safety concerns.

Accordingly, portable pumps with small footprints and
pre-filled drug reservoirs can address various problems
including those discussed above. One of the challenges for
pumps utilizing glass vials as drug reservoirs is to provide
controlled and accurate drug delivery. This challenge arises
due to varying stiction/friction forces between the surface of
the plunger and glass vial. Even under the same driving pres-
sure, these variable forces may cause the drug to be delivered
at different flow rates for basal (continuous) delivery. It will
also make bolus delivery (i.e., delivery of a discrete dose over
a short time period) unpredictable from one bolus to the next.

A related problem observed in connection with piston-
driven pumps is a characteristic residual “tailing” of the flow
rate—that is, if the amount of fluid expelled is plotted as a
function of time, the plot will contain an asymmetric peak
having a steepened front portion and an extended tail portion.
This is evident, for example, in many drug-delivery devices
that contain a drug reservoir formed of compliant materials.
This tailing effect leads to a longer delivery time and, once
again, inaccuracies in delivery volume.

SUMMARY

Embodiments of the present invention utilize a closed-loop
feedback control system to ensure accurate drug delivery.
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This control system may, for example, utilize a flow sensor to
measure the volume of delivery and an intelligent control
algorithm to anticipate and compensate for overdoses and
underdoses. Feedback control systems in accordance here-
with can be applied to any piston- or plunger-driven pump
system (hereafter, collectively, “driven” pumps) utilizing sen-
sors that measure flow directly or indirectly. An advantage to
this approach is adaptation of the control algorithm to the
pump’s output, ultimately resulting in extremely accurate
drug delivery.

In general overview, a driven pump device in accordance
herewith typically includes a cylindrical vial or cartridge with
anoutlet, and a piston or plunger movable therein. The piston/
plunger divides the interior of the vial into a front chamber
that is filled with liquid drug and, thus, forms the drug reser-
voir, and a back chamber that contains the pump mechanism
that drives the piston. For example, in electrolytic drug pump
devices, the back chamber, or “pump chamber,” may contain
a pair of electrodes and an electrolyte from which, upon
application of a drive current to the electrodes, electrolysis
gas evolves, building up pressure in the chamber that pushes
the piston forward so as to expel drug through the outlet.
Other pump mechanisms (e.g., osmotic, electrochemical,
motor-driven, etc.) may also be used.

In general, the drug flow rate of a piston pump device can
be regulated via the drive force/pressure applied by the pump;
for electrolytically driven pump devices, for example, this is,
in turn, a function of the drive current. The pump can be
operated continuously to dispense drug at a desired steady
flow rate, or in a “pulsed” manner (i.e., turning the pump on
and off at certain intervals for specific periods of time) to
deliver a series of discrete drug volumes. (Which mode of
operation is used often depends on the drug regimen. For
instance, diabetes patients usually need a continuous, low
“basal” rate of insulin, in addition to high-rate, short-duration
“bolus” deliveries before or after meals.) Sometimes, fre-
quent small-volume bolus injections are used to provide, on
average, a very low basal rate; this is called “discrete basal
delivery.” As explained above, the actual mechanics of piston
pump devices can undermine the accuracy of drug delivery.
One problem is the variable stiction/friction between the pis-
ton and glass vial, which can cause unstable flow rates despite
constant drive pressure. Another problem is the compression
of'the piston (which is usually made of a rubber-like material)
during pump operation, which results, after the pump has
been turned off, in a residual “tail” of drug flow as the piston
relaxes from its compressed state. This tail can be strongly
affected, in addition, by fluid viscosity, which can vary with
the particular drug composition as well as the temperature at
administration. As a result of this tail, the actual drug volume
delivered is larger than the “set” volume, which is the set flow
rate during pump operation multiplied by the time period of
operation

Embodiments of the present invention address these inac-
curacies by measuring the flow rate of drug (with any suitable
flow-rate sensor disposed at the drug reservoir outlet or in a
cannula, needle, or other fluid conduct downstream thereof)
and adjusting pump operation based thereon in real time. For
bolus deliveries, the “tail volume” (i.e., the volume of liquid
delivered during the residual tail described above) may be
measured during a priming stage (before drug is injected into
the patient), and the “set volume” decreased such that the sum
of tail volume and set volume equals the desired dosage.
Similarly, for discrete basal delivery, the set volume for each
pulse is adjusted based on the average tail volume of'a number
of immediately preceding pulses. For “continuous basal
delivery” (or simply “continuous delivery”), in which fluid is
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dispensed continuously rather than in discrete pulses, the
accumulated delivered volume may be repeatedly measured
for a time window, and deviations of the measured volume
from the target volume (i.e., the target flow rate times the
length of the time window) are compensated for by adjusting
the set flow rate for the next time window (typically between
upper and lower flow-rate boundaries).

Accordingly, in a first aspect, the invention relates to a drug
pump device. In various embodiments, the device comprises
adrug reservoir; an exit member for fluidically connecting the
reservoir with a drug injection site; a sensor; an electrolysis
pump comprising a pump chamber in mechanical communi-
cation with the drug reservoir via an intervening displacement
member, where the electrolysis pump is operable to exert a
pressure to drive the displacement member toward the exit
member and thereby force therethrough fluid in the drug
chamber; and control circuitry for (i) storing a target delivered
volume over a specified time, (ii) operating the electrolysis
pump to force fluid from the drug reservoir into the exit
member in pulses having a time window defined by a pump-
start time when pumping begins and a pump-stop time when
the pump is shut off, the time window corresponding to the
target delivered volume at a predetermined flow rate, (iii)
based on signals received from the sensor, measuring a vol-
ume of fluid through the exit member resulting from a pulse,
the measured volume including a pulse volume through the
exit member during the pulse and an additional tail volume
through the exit member after the pulse, and (iv) adjusting the
pulse time window based on the measured pulse volume and
tail volume to conform collectively to the target delivered
volume. In various embodiments, the sensor is at least one
pressure sensor. In other embodiments, the sensor is at least
one flow sensor, and in still other embodiments the sensor
comprises or consists of at least one flow sensor and at least
one pressure sensor.

The target delivered volume may correspond to a single
bolus, in which case the control circuitry may cause measur-
ing to occur during a priming stage and causing adjustment to
occur during a delivery stage. Alternatively, the control cir-
cuitry may be configured to cause the target delivered volume
to be dispensed through the exit member over a sequence of
time-separated pulses occurring over a time interval; in these
implementations, the control circuitry causes measuring to
occur during a first time interval and causing adjustment to
occur during a second time interval following the first time
interval. In some embodiments, adjustment is based on the
measured pulse volume and tail volume from a plurality of
pulses.

In another aspect, the invention relates to a method of
controlling an actual delivery volume of fluid to conform to a
target delivery volume in a drug pump device comprising a
drug reservoir, an exit member for fluidically connecting the
reservoir with a drug injection site, and an electrolysis pump
operable to force fluid from the drug reservoir into the exit
member in pulses each having a time window defined by a
pump-start time when pumping begins and a pump-stop time
when the pump is shut off. The time window corresponds to
a target delivered volume at a predetermined flow rate. In
various embodiments, the method comprises measuring a
volume of fluid through the exit member resulting from a
pulse, where the measured volume includes (i) a pulse volume
through the exit member during the pulse and (ii) an addi-
tional tail volume through the exit member after the pulse;
and adjusting the pulse time window based on the measured
pulse volume and tail volume to conform collectively to the
target delivered volume. The measurement may be made with
at least one pressure sensor and/or at least one flow sensor. In
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some embodiments the target delivered volume corresponds
to a single bolus, in which case the measuring step occurs
during a priming stage and the adjusting step occurs during a
delivery stage. In other embodiments the target delivered
volume is dispensed through the exit member over a sequence
of time-separated pulses occurring over a time interval, in
which case the measuring step occurs during a first time
interval and the adjusting step occurs during a second time
interval following the first time interval. Moreover, the adjust-
ing step may be based on the measured pulse volume and tail
volume from a plurality of pulses.

These and other objects, along with advantages and fea-
tures of the present invention herein disclosed, will become
more apparent through reference to the following description,
the accompanying drawings, and the claims. Furthermore, it
is to be understood that the features of the various embodi-
ments described herein are not mutually exclusive and can
exist in various combinations and permutations. As used
herein, the term “substantially” means+10% and, in some
embodiments, +5%. A “measure” or “measurement” may be
direct or indirect, i.e., a value derived from a directly mea-
sured value.

DESCRIPTION OF THE DRAWINGS

Inthe drawings, like reference characters generally refer to
the same parts throughout the different views. Also, the draw-
ings are not necessarily to scale, with an emphasis instead
generally being placed upon illustrating the principles of the
invention. In the following description, various embodiments
of the present invention are described with reference to the
following drawings, in which:

FIG.1isablock diagram illustrating the various functional
components of electrolytic drug pump devices in accordance
with various embodiments;

FIGS. 2A and 2B are schematic side views of piston pump
devices in accordance with various embodiments;

FIG. 3 illustrates how repeated, alternating pulses and non-
delivery periods can be combined to obtain an averaged flow
rate equal to a targeted flow;

FIGS. 4A-4E graphically depict operation of an adaptive
control algorithm for overcoming a flow “tail”;

FIG. 5, like FIG. 3, illustrates an example of discrete basal
delivery achieved by multiple pulse/time deliveries;

FIG. 6 graphically depicts computation and use of average
tail volumes in a compensating flow scheme at the priming
stage;

FIG. 7 graphically depicts computation and use of average
tail volumes in a compensating flow scheme at the delivery
stage;

FIG. 8 graphically depicts the operation of an adaptive
control algorithm for continuous basal delivery;

FIG. 9 graphically depicts the operation of an adaptive
control algorithm for bolus delivery at the priming stage; and

FIG. 10A graphically depicts the delivery stage of the bolus
algorithm; and

FIG. 10B graphically depicts the delivery stage ofthe bolus
algorithm in a situation where the bolus volume is small and
the peak flow rate never reaches the maximum dosing rate.

DETAILED DESCRIPTION

1. Pump Architecture

FIG. 1 illustrates, in block diagram form, the main func-
tional components of a drug pump device 100 in accordance
with various embodiments of the present invention. In gen-
eral, the pump device 100 includes a drug reservoir 102 that
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interfaces with an electrolysis pump 104 via a displaceable
member 106. The displaceable member 106 may be, for
example, a piston, diaphragm, bladder, or plunger. In use, the
drug reservoir 102 is filled with medication in liquid form,
and pressure generated by the pump 104 moves or expands
the displaceable member 106 so as to push the liquid drug out
of the reservoir 102. A cannula, needle, or other exit member
108 connected to an outlet of the drug reservoir 102 conducts
the liquid to an infusion set 109. The infusion set 109 may
include a catheter fluidically connected to the cannula 108 for
delivering the drug to a subcutaneous tissue region. A lancet
and associated insertion mechanism may be used to drive the
catheter through the skin. Alternatively, the infusion set 109
may include another type of drug-delivery vehicle, e.g., a
sponge or other means facilitating drug absorption through
the skin surface.

The electrolysis pump 104 generally includes an electro-
lyte-containing chamber (hereinafter also referred to as the
“pump chamber”) and, disposed in the chamber, one or more
pairs of electrodes that are driven by a direct-current power
source to break the electrolyte into gaseous products. Suitable
electrolytes include water and aqueous solutions of salts,
acids, or alkali, as well as non-aqueous ionic solutions. The
electrolysis of water is summarized in the following chemical
reactions:

electrolysis
anode: 2H0() ————> O(g) + 4H%(aq) + 4
recombination

electrolysis
cathode: 2H:O(l) + 20 m—————> 20H(aq) + H,(g)
recombination

electrolysis

Net: 2HO() 0x(8) + 2H,(g)

recombination

The net result of these reactions is the production of oxygen
and hydrogen gas, which causes an overall volume expansion
of'the drug chamber contents. Gas evolution occurs even in a
pressurized environment (reportedly at pressures of up to 200
MPa, corresponding to about 30,000 psi). As an alternative
(or in addition) to water, ethanol may be used as an electro-
lyte, resulting in the evolution of carbon dioxide and hydro-
gen gas. Ethanol electrolysis is advantageous due to its
greater efficiency and, consequently, lower power consump-
tion, compared with water electrolysis. Electrolysis pumps in
accordance with several embodiments are described in detail
further below.

The pressure generated by the drug pump 104 may be
regulated via a pump driver 110 by a system controller 112
(e.g., amicrocontroller). The controller 112 may set the drive
current and thereby control the rate of electrolysis, which, in
turn, determines the pressure. In particular, the amount of gas
generated is proportional to the drive current integrated over
time, and can be calculated using Faraday’s law of electroly-
sis. For example, creating two hydrogen and one oxygen
molecule from water requires four electrons; thus, the amount
(measured in moles) of gas generated by electrolysis of water
equals the total electrical charge (i.e., current times time),
multiplied by a factor of 34 (because three molecules are
generated per four electrons), divided by Faraday’s constant.

The system controller 112 may execute a drug-delivery
protocol programmed into the drug pump device 100, and
may be responsive to one or more sensors 113, 114 that
measure an operational parameter of the device 100, such as
the pressure in the pump chamber 104 or the flow rate through
(or pressure in) the cannula 108. For example, the controller
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112 may adjust the current supplied to the electrolysis elec-
trodes based on the pressure inside the pump chamber to
achieve a target pressure. The target pressure, in turn, may be
calculated based on a desired flow rate, using a known rela-
tionship between flow rate and pressure (as determined, e.g.,
by calibration). Due to the low cost of pressure sensors (such
as, e.g., MEMS sensors as used in the automotive industry),
this option is particularly advantageous for pumps designed
for quick drug delivery. Indeed, two or more pressure sensors
113 may be placed in the pump chamber to simultaneously
monitor pressure therein; this redundancy provides additional
feedback to the controller 112, improves accuracy of infor-
mation, and serves as a backup in case of malfunction of one
of the sensors. Alternatively, the rate of drug flow out of the
reservoir 102 may be measured directly and in real-time,
using a flow sensor 114 integrated in the exit member 108 in
a conventional manner. The total delivered dose can be com-
puted by integrating the flow rate over time, and may serve as
a control parameter for the electrolysis current as described in
greater detail below.

In some embodiments, a pressure sensor 113 inside the
pump chamber is used in combination with a flow sensor 114
in the cannula to increase the accuracy and precision of the
feedback control loop. The use of multiple sensors also
ensures that, in case the flow sensor 114 fails, the pressure
sensor 113 would be able to detect high drug delivery rates,
and shut the pump 104 down to avoid administration of an
overdose to the patient or damage to the pump device. Con-
versely, the combination of flow and pressure sensors 114,
113 can also detect a violation in the drug reservoir 102 if
pressure is measured in the pump chamber but no flow is
measured in the cannula 108, indicating a potential leak. In
general, the sensors used to measure various pump param-
eters may be flow, thermal, time of flight, pressure, or other
sensors known in the art, and may be fabricated (at least in
part) from parylene—a biocompatible, thin-film polymer.
The cannula 108 may also include a check valve 116 that
prevents accidental drug delivery and backflow of liquid into
the drug reservoir 112; like the sensor 114, the check valve
116 may be made of parylene. In other embodiments, silicon
or glass are used in part for the flow sensor 114 and valve 116
construction.

The drug pump device 100 may include electronic circuitry
118 (which may, but need not, be integrated with the system
controller 112) for conditioning and further processing the
sensor signal(s) and, optionally, providing pump status infor-
mation to a user by means of LEDs, other visual displays,
vibrational signals, or audio signals. In addition to controlling
the drug pump 104, the controller 112 may be used to control
other components of the drug pump system; for example, it
may trigger insertion of the lancet and catheter. The system
controller 112 may be a microcontroller, i.e., an integrated
circuit including a processor core, memory (e.g., in the form
of flash memory, read-only memory (ROM), and/or random-
access memory (RAM)), and input/output ports. The memory
may store firmware that directs operation of the drug pump
device. In addition, the device may include read-write system
memory 120. In certain alternative embodiments, the system
controller 112 is a general-purpose microprocessor that com-
municates with the system memory 120. The system memory
120 (or memory that is part of a microcontroller) may store a
drug-delivery protocol in the form of instructions executable
by the controller 112, which may be loaded into the memory
at the time of manufacturing, or at a later time by data transfer
from a hard drive, flash drive, or other storage device, e.g., via
a USB, Ethernet, or firewire port. In alternative embodiments,
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the system controller 112 comprises analog circuitry
designed to perform the intended function.

The pump driver 110, system controller 112, and electronic
circuitry 118 may be powered, via suitable battery electron-
ics, by a battery 122. Suitable batteries 122 include non-
rechargeable lithium batteries approximating the size of bat-
teries used in wristwatches, as well as rechargeable Li-ion,
lithium polymer, thin-film (e.g., Li-PON), nickel-metal-hy-
dride, and nickel cadmium batteries. Other devices for pow-
ering the drug pump device 100, such as a capacitor, solar cell
or motion-generated energy systems, may be used either in
place of the battery 122 or supplementing a smaller battery.
This can be useful in cases where the patient needs to keep the
drug-delivery device 100 on for several days or more.

In certain embodiments, the drug pump device 100
includes, as part of the electronic circuitry 118 or as a separate
component, a signal receiver 124 (for uni-directional telem-
etry) or a transmitter/receiver 124 (for bi-directional telem-
etry) that allows the device to be controlled and/or re-pro-
grammed remotely by a wireless handheld device 150, such
as a customized remote control or a smartphone. In certain
embodiments, the handheld device 150 and pump device 100
communicate over a (uni- or bidirectional) infrared (IR) link,
which may utilize one or more inexpensive IR light-emitting
diodes and phototransistors as transmitters and receivers,
respectively. Communication between the drug pump device
100 and the handheld device 150 may also occur at radio
frequencies (RF), using, e.g., a copper coil antenna as the
transmitter/receiver component 124.

The drug-delivery device 100 may be manually activated,
e.g., toggled on and off, by means of a switch integrated into
the pump housing. In some embodiments, using the toggle
switch or another mechanical release mechanism, the patient
may cause a needle to pierce the enclosure of the drug reser-
voir 102 (e.g., the septum of a drug vial, as explained below
with respect to FIGS. 2A and 2B) to establish a fluidic con-
nection between the reservoir 102 and the cannula 108; prim-
ing of the pump can then begin. During priming, liquid is
pumped from the reservoir through the fluid path, ideally
displacing air with liquid up to the tip of the injection needle.
Coupling insertion of the needle into the reservoir 102 with
the activation of the pump device ensures the integrity of the
reservoir 102, and thus protects the drug, up to the time when
the drug is injected; this is particularly important for pre-filled
drug pump devices. Similarly, the lancet and catheter of the
infusion set 109 may be inserted by manually releasing a
mechanical insertion mechanism. In some embodiments,
insertion of the lancet and catheter automatically triggers
electronic activation of a pump, e.g., by closing an electronic
circuit. Alternatively, the pump and/or insertion set may be
activated remotely by wireless commands.

The functional components of drug pump devices as
described above may be packaged and configured in various
ways. In certain preferred embodiments, the drug pump
device is integrated into a patch adherable to the patient’s
skin. Suitable adhesive patches are generally fabricated from
a flexible material that conforms to the contours of the
patient’s body and attaches via an adhesive on the backside
surface that contacts a patient’s skin. The adhesive may be
any material suitable and safe for application to and removal
from human skin. Many versions of such adhesives are known
in the art, although utilizing an adhesive with gel-like prop-
erties may afford a patient particularly advantageous comfort
and flexibility. The adhesive may be covered with a remov-
able layer to preclude premature adhesion prior to the
intended application. As with commonly available bandages,
the removable layer preferably does not reduce the adhesion
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properties of the adhesive when removed. In some embodi-
ments, the drug pump device is of a shape and size suitable for
implantation.

The various components of the drug pump device may be
held within a housing mounted on the skin patch. The device
may either be fully self-contained, or, if implemented as
discrete, intercommunicating modules, reside within a spatial
envelope that is wholly within (i.e., which does not extend
beyond in any direction) the perimeter of the patch. The
housing may provide mechanical integrity and protection of
the components of the drug pump device 100, and prevent
disruption of the pump’s operation from changes in the exter-
nal environment (such as pressure changes). The control sys-
tem components 110, 112, 118, 120, 122 may be mounted on
a circuit board, which may be flexible and/or may be an
integral part of the pump housing. In some embodiments, the
control system components are integrated with the electroly-
sis electrodes into self-contained unit.

Drug pump devices 100 in accordance herewith may be
designed for single or repeated use. Multi-use pumps gener-
ally include a one-way check valve and a flow sensor, as
described above, in the cannula. Further, the drug reservoir of
amulti-use pump may be refillable via a refill port, using, e.g.,
a standard syringe. In some embodiments, the drug pump
device 100 is removed from the patient’s skin for re-filling.
The patient may, for example, place the drug pump device 100
and cartridge containing the new drug into a home refill
system, where the pump device and cartridge may be aligned
using, e.g., a press-machine mechanism. The patient may
then press a button to trigger automatic insertion of a needle
that draws liquid drug from the cartridge to the cannula in
order to activate the electronics and begin priming the pump.

The electrolysis pump 104 and drug reservoir 102 may be
arranged within the device 100 in different ways, the two
most common being a piston-pump configuration, in which
the pump chamber and reservoir are formed within an elon-
gated vial and separated by a piston movable along the axis of
the vial, and the diaphragm-pump configuration, in which the
reservoir is disposed on top of the pump chamber and sepa-
rated therefrom by a flexible diaphragm. Both configurations
are described in detail in U.S. patent application Ser. No.
13/091,047, filed on Apr. 20, 2011, which is hereby incorpo-
rated herein by reference in its entirety.

FIG. 2A schematically illustrates an exemplary piston
pump device 200. The pump device 200 includes a cylindrical
(or, more generally, tubular) vial 202 with a piston 204 mov-
ably positioned therein and an electrolysis electrode structure
206 mounted to one end. A septum 208 may be disposed at the
other end to seal the vial 202. Both the piston 204 and the
septum 208 may be made of an elastomeric polymer material,
such as a synthetic or natural rubber; in some embodiments,
silicone rubber (i.e., polydiorganosiloxane, e.g., polydimeth-
ylsiloxane) is used. The piston 204 separates the interior of
the vial 202 into a drug reservoir 210 and a pump chamber
212. Inuse, aneedle 214 pierces the septum 208 to allow fluid
egress from the drug reservoir 210; a cannula (not shown)
connected to the needle 214 may conduct the fluid to the
infusion set (not shown). The piston pump device 200 is
enclosed in a protective housing 216, e.g., made of a hard
plastic.

The electrodes 206 may be made of any suitable metal,
such as, for example, platinum, titanium, gold, or copper, and
may form a pair of parallel wires or plates. Alternatively, to
improve electrolysis efficiency, the electrodes can have non-
traditional shapes. For example, they may be interdigitated,
or individually wound up into a spiral configuration (and
oriented so as to face each other). Further, the electrodes 206
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may be embedded in a hydrophilic absorbent material (e.g., a
cotton ball) that ensures continuous contact with the electro-
lyte. This solves a problem frequently encountered with con-
ventional electrolysis pumps, in which the electrodes are
simply submerged in liquid electrolyte: as gaseous electroly-
sis products are generated, they push the piston towards the
outlet end of the drug reservoir, thereby increasing the vol-
ume of the electrolysis chamber, which causes a decrease in
the level of the electrolyte. Depending on the orientation of
the device, one or both electrodes may, as a result, gradually
emerge from the electrolyte and become surrounded by the
gas, eventually forming an open circuit and, thus, causing the
electrolysis reaction to cease. This problem can be avoided in
various ways, one of which is to surround the electrodes with
a hydrophilic absorbent material such as (but not limited to) a
hydrogel, cotton ball, sponge, or super-absorbent polymer.
The electrolyte stays inside the hydrophilic absorbent mate-
rial, which efficiently expels the generated gas and keeps the
electrodes replenished with electrolyte.

The vial 202 may be fabricated from a glass, polymer, or
other materials that are inert with respect to the stability of the
drug and, preferably, biocompatible. Polymer vials, e.g.,
made of polypropylene or parylene, may be suitable for cer-
tain drugs that degrade faster when in contact with glass, such
as protein drugs. For many other drugs, glass is the preferred
material. Glass is commonly used in commercially available
and FDA-approved drug vials and containers from many dif-
ferent manufacturers. As a result, there are well-established
and approved procedures for aseptically filling and storing
drugs in glass containers, which may accelerate the approval
process for drug pump devices that protect the drug in a glass
container, and avoid the need to rebuild a costly aseptic filling
manufacturing line. Using glass for the reservoir further
allows the drug to be in contact with similar materials during
shipping. Suitable glass materials for the vial may be selected
based on the chemical resistance and stability as well as the
shatterproof properties of the material. For example, to
reduce the risk of container breakage, type-11 or type-111 soda-
lime glasses or type-1 borosilicate materials may be used.

To enhance chemical resistance and maintain the stability
of'enclosed drug preparations, the interior surface of the vial
may have a specialized coating. Examples of such coatings
include chemically bonded, invisible, ultrathin layers of sili-
con dioxide or medical-grade silicone emulsions. In addition
to protecting the chemical integrity of the enclosed drugs,
coatings such as silicone emulsions may provide for lower
and more uniform friction between the piston and vial.

In certain embodiments, the piston pump device 200 is
manufactured by fitting a conventional, commercially avail-
able glass or polymer drug vial, which may already be vali-
dated for aseptic filling, with the piston 204 and electrolysis
pump components. A screw-in needle cassette may be placed
over the septum 208, and a mechanical actuation mechanism
may serve to screw the cassette into the vial 202 such that the
cassette needle 214 punctures the septum 208 and establishes
a connection with the cannula at the time the patient desires to
use the pump. To accommodate the electrolysis pump, the
vial 202 is, in some embodiments, longer than typical com-
mercially available vials, but maintains all other properties
such that validated filling methods and the parameters of
existing aseptic filling lines need not be changed. The drug
pump device may be furnished with a prefilled vial. If a glass
vial is used, the drugs can be stored in the pump device for
long-term shelflife without the need to change the labeling on
the drug.

FIG. 2B illustrates the pump 200 with a pressure sensor
located in the pump chamber 212. Signals from the flow
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sensor and the pressure sensor are received by programmable
circuitry and may be used to regulate pump operation as
described in detail below.

2. Feedback Control

Closed-loop feedback control in accordance herewith
ensures accurate drug delivery in driven pumps. In one deliv-
ery scheme, a pump system delivers drug in discrete doses or
pulses, resulting in flow rates that are much lower than the
continuous delivery capabilities of the pump. Due to the
effect of the stiction of the plunger and glass wall of the
cartridge at such a low flow rate, each small discrete dose of
drug is generated after the plunger is pushed to overcome the
stiction force. Each discrete delivery may overshoot to a flow
rate higher than a targeted flow rate, followed by an abrupt
stop of the plunger movement causing the flow rate to cease
for certain interval. Combining these repeated, alternating
pulses and non-delivery periods results in an averaged flow
rate theoretically equal to the targeted flow rate and the
amount of dose volume equal to the volume obtained from
continuous delivery mode. This approach is illustrated in
FIG. 3, which shows a discrete dose mode in which the peak
flow rate for each pulse is 500 nl./min, the duration for each
pulse is 4 min, and the average flow rate representing a con-
tinuous constant delivery mode is 33.3 nl./min.

The mechanics of actually delivering these discrete doses,
however, can result in inaccuracy (such as an overdose or
underdose relative to the desired target delivery). When elec-
trolysis occurs in an electrolytically driven plunger pump,
pressure builds up behind the plunger, causing it to compress.
When electrolysis stops, however, the plunger relaxes from
this compressed state. The relaxation of the plunger material
continues to push fluid out of the drug reservoir, causing a
prolonged “tail” of the flow rate. This residual flow eventually
ceases after the plunger returns to its natural state. The flow
sensor enables the system to determine the actual dose deliv-
ered, triggering a control algorithm (such as an artificial neu-
ral network, fuzzy logic, etc.) that accounts for deviations
from the target dose. In other embodiments, a pressure sensor
in the pump chamber is used instead of, or in addition to, the
flow sensor, since pressure readings are readily correlated
with the volume of fluid expelled from the reservoir.

FIGS. 4A-4E illustrate the general concept of an adaptive
control algorithm suitable for addressing this problem. In
particular, FIG. 4A shows an ideal discrete dose of 0.05 U
(which deviates from a perfectly rectangular pulse due to a
necessary ramp-up time, which represents proper pump
operation and does not vary significantly); F1G. 4B shows the
actual delivered dose with additional volume “tail”’; FIG. 4C
illustrates measurement of the tail at 0.02 U, which totals 0.07
U delivered; the pump stops delivery early at 0.03 U, which
accounts for the unwanted tail of 0.02 U shown in FIG. 4D
(i.e., the pulse is adjusted so that the tail volume becomes part
of'the intended delivery volume rather than a deviation there-
from); and FIG. 4E illustrates performance in accordance
with embodiments of the present invention, which results in a
delivered dose that more accurately tracks the target dose
shown in FIG. 4A.

A typical insulin pump should be able to provide bolus and
background basal delivery rates over a wide range in order to
serve different patients’ needs. A prefilled insulin pump in
accordance herewith can successfully provide suitable basal
and bolus ranges. However, due to the nature of prefilled
cartridge pumps, in particular the varying friction between
the rubber plunger and glass wall among different cartridges,
delivery accuracies can be compromised if corrections for
such variation are not made. Thus, a real-time intelligent
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control algorithm may be used to compensate for the variation
and maintain a very accurate dosage for both basal and bolus
delivery.

Due to the unpredictable interaction between the plunger
and glass cartridge of a driven pump, many variables can
contribute to dosing inaccuracies. Since an initial stiction
(initial static friction) exists between the plunger and glass
vial, the pump must achieve a minimum pressure before the
plunger can move smoothly to deliver a truly continuous flow
rate. In this situation, only dynamic friction occurs between
plunger and the glass container. On the other hand, the initial
stiction (or static friction) may limit the minimum flow rate
that the pump can offer and make it very difficult to deliver
small amount of drug. To deliver at flow rates below this
threshold, a discrete delivery scheme herein termed “discrete
basal delivery” may beutilized. In this scheme, the target flow
rate is converted to a target volume delivery in a given time
period. Several small pulses of insulin are delivered through-
out the given time span to achieve the target volume delivery,
which fulfills the targeted average flow rate as described in the
following equation.

Total Delivery Volume (U)
Time (Hr)

Flow Rate (%) = ®

In one representative embodiment, the the volume of the
tail is measured from the previous few (e.g., three) doses the
average is determined. The system controller 112 then adjusts
the target volume for the next dose based on this average. The
following equations may be used by the controller to deter-
mine the proper correction.

M

Zn: Vrau(k)
=0

Vrsit_avg = "

@

Vser (1) = Vrarger (n) - VTail,Avg

where Vi, .. 1s the average tail volume, V,, is the indi-
vidual tailvolume, V _, is the predicted volume to be delivered
excluding the tail volume, and V is the the total expected
volume.

A similar approach may be used for continuous delivery. In
particular, after analyzing the pump’s previous average deliv-
ery during a given time period, the system controller 112
adjusts the overall flow rate (on a pulse-by-pulse basis) to
correct for the previous delivery error during the next time
period.

FIG. 5 illustrates an example of discrete basal delivery
achieved by multiple pulse/time deliveries. As shown, there
are four bolus deliveries in an hour and the equivalent flow
rate is 33.3 nL./min. To generate these small pulses, the pres-
sure in the electrolysis chamber is quickly released at the end
of each pulse to accurately obtain the targeted volume for
each small pulse. If the pressure is not promptly released, the
high pressure will prevent the pump flow from stopping and
result in a large over-delivery. Meanwhile, due to residual
pressure induced from the plunger/glass interaction and the
compliance of the plunger, a “tail” is produced that degrades
the accuracy of basal delivery.

In one embodiment that corrects for these errors, the sys-
tem controller 112 executes an adaptive control algorithm
(ACA) during a priming stage and during a delivery stage. At
the priming stage, a number n of predetermined pulses (e.g.,

target
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0.05 U/pulse) is scheduled every t minutes. After reaching the
target volume for each pulse, the pressure is released and the
tail volumes measured. Throughout the priming stage, the
system controller 112 (see FIG. 1) collects these tail volumes
from a number N, of pulses to determine an average tail
volume. This averaged volume is taken into account in adjust-
ing the time width of the subsequent pulse during the delivery
stage. The priming tails are averaged and stored as
V sait_prime._avg 101 future usage. This is illustrated in FIG. 6, in
which N, is the number of discrete basal pulses to be deliv-
ered during the priming stage, V,,,; ,,,;m.(n) corresponds to
the n” tail volume generated by the n” pulse in the priming
stage, and Vs ,ime avg COrresponds to the average tail vol-
ume of the discrete pulses in the priming stage.

At the delivery stage, as illustrated in FIG. 7, the discrete
basal target volume is adjusted according to the average vol-
ume of the previous n tails. The first discrete basal pulse, Set
Volume or V_,(n), is established as follows. After the tail
volumes from the n pulses during the priming stage are aver-
aged, Vi prime_avg 18 subtracted from V.., (the original
target volume of the pulse) to give V(1) (i.e., the adjusted
volume for the pulse). In FIG. 7, V1 urge, is the target
volume to be delivered in each pulse, V, (n) is the tail vol-
ume produced by each pulse, V.70 15 the actual cumu-
lative volume delivered over time, and V,;; ., 1s the average
tail of the previous n discrete basal pulses.

For each subsequent discrete basal pulse, the system uses
the previous n tail volumes in calculating the average tail
volume to be used in determining the V,, for the current
discrete basal pulse. For example, if there are three discrete
pulses delivered during the priming stage (n=3), V,;; ., for
the first pulse in the delivery stage corresponds to the average
of'these three previous tails, which in this case is the average
of'these three tail volumes during the priming stage. Next, the
value of V,; ,,, Tor the second pulse in the delivery stage
corresponds to the average of the three previous tails. How-
ever, the three previous tails are the second and third discrete
basal pulses in the priming stage and the first pulse of the
delivery stage.V,,,; ., for the third pulse in the delivery stage
corresponds to the average of the third tail in the priming stage
and the first and second tails of the delivery stage, and so
forth.

A special case arises when V , is negative. This means that
there is an overdose from a previous delivery such that the
next scheduled pulse should deliver a negative volume to
achieve the desired target volume, V..., ,yveras Of course,
drug pumps ordinarily cannot operate to withdraw fluid from
the patient. Instead, the system sets V_,to 0, which causes the
controller 112 to skip the pulse in an effort to correct for a
previous over-delivery and achieve the correct overall target
volume, V,,,.0r overans Also, to reduce any over-delivery
caused by missing multiple pulses, the system can set a maxi-
mum tolerance volume to be delivered at each pulse
(Vax s00)- The V volume never exceeds V.. .- If it does,
the system controller 112 will coerce V,,, to be equal to
V ax o~ This ensures overall profile stability, and also
ensures the absence of dramatic change in overdose and
underdose caused by frequent over-delivery and missed
pulses.

It should be noted that the tail volume can vary over the
lifetime of the pump or even during an operating cycle based
on various factors. Accordingly, calibration is typically per-
formed periodically rather than, for example, a single time
when the pump is first used. For example, the response of an
electrolysis-driven pump to a given input current supplied to
the electrolysis electrodes depends on how much liquid is
remaining in the drug reservoir and the gas/liquid ratio in the
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electrolysis chamber. Other factors can cause the response of
the pump to change over time including, for example, degra-
dation of electrolysis electrodes, changes in the concentration
of the electrolyte in the electrolysis chamber, changes in the
flow characteristics of valves in the fluid path, and restrictions
that form at the exit port due to tissue growth or some other
mechanism.

Similar to discrete basal delivery, continuous basal deliv-
ery faces challenges due to the plunger and glass-wall fric-
tion. Ordinarily it is not necessary to deliver a pulse pattern in
continuous basal delivery (as contrasted with discrete basal
delivery), and during continuous pumping, the plunger oper-
ates above its stiction range. Nonetheless, a continuous adap-
tive control algorithm can increase the accuracy of drug deliv-
ery by minimizing the errors caused by interaction between
the plunger and the glass wall.

In one embodiment, a continuous adaptive control routine
continuously monitors the accumulated volume and its devia-
tion from the target volume. The routine sets a time window,
AT, and maximum tolerable flow rate range, AQ,,... ,.,- Lhe
routine calculates the actual volume delivered during AT and
its deviation from the target volume. Based on the deviation,
a target flow rate, Q,_,(2), for the next AT window is deter-
mined in order to compensate for the error in delivery during
the first AT window. The maximum tolerance, AQ,,,. ;o.s
comes into play when there is too much error in delivery
during the first AT and Q. ,(2) has been raised or decreased
beyond the physiclogical range from Q,,, ..., 11 such case,
Q..A2) is coerced to equal Q.,, 1iitAQ, e rors depending
on the delivery error during previous sampling time. This
process repeats throughout continuous basal delivery to
ensure the overall stability of the flow profile and delivery
accuracy.

There are many ways to raise the Q,,, for the next AT time
window. A simple example is to have only three possible
Values fOr Qset: Qsetﬁinit‘[ali Qsetﬁinit‘[al-"AQmaxitori and
Qser min—AQ,0x 10, I one embodiment, if the cumulative
delivered volume did not deviate from the cumulative target
volume by more than an acceptable percentage (e.g., 5%) at
the end of the sampling period AT, then the system will set
Q.. 10 Qu.; iniriars Which is the initial flow-rate set point. If the
actual delivered volume exceeds the target volume by more
than the acceptable percentage (e.g., 5%), Q.,, is setto Q. ~
AQ,,.. ;. Torthe nexttime window AT. Ifthe actual delivered
volume falls below the target volume by more than the accept-
able percentage (e.g., 5%), Q,,,is setto Q. +AQ,, . ,..forthe
next time window AT. -

In another embodiment, illustrated in FIG. 8, a continuous
spectrum of Q. ,(n) values is used. In the figure, AT is a
predefined time window, Q. (n) is the target flow rate during
the time window, Q.,, ;...; 18 the initial target flow rate
(which is also equal to Q,,,, the overall target flow rate),
V cmdasive 18 the actual cumulative volume delivered over
time, and V., is the target cumulative volume over time, %
error represents the error percentage (i.e., the deviation from
V sarger) Dy volume, and AQ is the maximum flow rate
that Q,,, cannot exceed.

Each Q,,(n) value inversely corresponds to a percentage
deviation above or below the target delivery volume from the
previous sampling period. If the cumulative delivered volume
exceeds the cumulative target volume by more than an accept-
able percentage (% error), Q.. (n) is set 10 Q..; ;urar—"0
errorxAQ, . .. for the next time window AT. If the actual
delivered volume falls below the target volume by more than
% error, Q. ,(1n) is sett0 Q.,; ;unar+ %0 €rrorxAQ,, .. ;. forthe
next time window AT. Once again, the Q,_(n) can never go

below Qsetﬁinitial_AQma_xitor or above Qsetﬁinit‘[al-"AQmaxitors

max_tor
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or the system will coerce the Q,,(n) to be set at Qqo; ;10—
AQ i sor OF Quer initiar*AQpax_sor-

More generally, various algorithms and controllers can be
used to adjust pump operation through monitoring and adjust-
ment during time windows. During a time window, for
example, a closed-loop control scheme, such as proportional-
integral-derivative (“PID”) controller, on-off controller,
fuzzy logic controller, proportional controller, and/or linear
controller can be applied to maintain as constant a target
delivery parameter such as flow rate. In the next time window,
the constant target delivery parameter can be altered based on
the comparison result from the previous time window For
example, a PID controller may be used during a timing inter-
val, while a different algorithm, such as the ACA, may be used
between time windows to alter the PID controller settings
(e.g., the constant target delivery flow rate, the acceptable
upper and lower ranges of flow rates, and constants for posi-
tional, integral, and derivative calculations). Accordingly,
parameters that can be monitored and adjusted include flow
rate, pressure, volume, current, and voltage. Moreover, the
integration or differentiation of any one or more of these
parameters may be monitored and adjusted.

Bolus delivery faces the same accuracy challenges caused
by the tail volume as the discrete basal pulses. However,
boluses are delivered on demand, and the accuracy of each
individual bolus cannot be compensated by another bolus. In
the case of insulin delivery, boluses are usually preceded and
followed by a background basal delivery; for example, a
bolus may be administered just before mealtime, after which
insulin is delivered at the background basal rate until the next
bolus. In such applications the bolus adaptive control algo-
rithm can be relatively simple, as it may be based solely on tail
volume to achieve overall accuracy. In other scenarios, how-
ever, the flow profile may be more complex and/or unpredict-
able; for example, the rate of drug administration may be
varied periodically or continuously based on the monitored
value of a physiologic, environmental or blood-borne chemi-
cal concentration parameter.

In one embodiment, the real-time bolus adaptive control
algorithm involves a priming stage and a delivery stage. Dur-
ing the priming stage, a bolus (e.g., 1 U) is delivered and the
tail volume is measured until the flow rate reaches zero. This
bolus is sufficient in volume to allow the system to pump the
flow rate up to its maximum dosing rate (e.g., 30 U/Hr for
insulin pump). If the user selects a smaller bolus volume, the
peak bolus flow rate may never reach the maximum dosing
rate (e.g., 30 U/Hr). If the user selects a large bolus volume,
the peak bolus target flow rate can be kept at the maximum
dosing rate (e.g., 30 U/Hr) using a flow-sensor-based closed-
loop control system as described, for example, in copending
application Ser. No. 13/680,828, filed on Nov. 19, 2012 (the
entire disclosure of which is hereby incorporated by refer-
ence); it simply takes longer to finish the bolus.

Operation during the priming stage is illustrated in FIG. 9.
The white rectangle represents V., ..., 1.€., the desired
volume to be delivered. Additional flow during ramp-up
(Vsise_prime) and during the tail (V,.; ,,:m.) 15 modeled by
fitted curves Qy, z,..(t) (flow rate vs. time during the ramp up
stage) and Qg, z,..(t) (representing the tail after V, ,,,.,,. has
completed). The areas under these fitted curves correspond to
V. ise_prime (the volume delivered during ramp-up) and
V it prime (the volume delivered during the tail segment).
After obtaining the tail volume information and its curve,
interpolation can be used to predict the tail volume for difter-
ent boluses with different potential peak flow rates. The inter-
polated curve and the peak flow rate at the end of the bolus can
be used to predict the tail volume.
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Two delivery-stage scenarios are illustrated, respectively,
in FIGS. 10A and 10B. In FIG. 10A, the flow pattern corre-
sponds to that shown in FIG. 9, with a peak flow rate is that is
substantially constant (flat). A calibrated tail volume
V vait_avg catin 15 Used to calculate the actual delivery bolus
volume, which is equal to the difference between the target
volume V. and the total predicted tail volume (including
the background basal cumulative volume); thus, the cali-
brated set volume V., .., isequalto V..~V i wve cats—
V signasasar- The total bolus volume V., actually delivered is
equal to Vset calib+VtaiZ calibs where Vtail calib is the actual
run-time tail volume (this time ignoring the background basal
cumulative volume).

If the bolus volume is small and the peak flow rate never
reaches the maximum dosing rate (e.g., 30 U/Hr) before the
target bolus volume has been delivered, a curve-fitting tech-
nique may be used to predict the peak flow rate as illustrated
in FIG. 10B; here the tail volume is estimated between the
predicted peak flow rate and the (actual) background basal
flow rate. This can give a very accurate prediction of the tail
volume, and during the actual delivery this is used to com-
pensate for the effect of the tail effect. In FIG. 10B, T, is the
bolus start time; Ty, is the time at which the bolus reaches
the maximum peak set flow rate Q,,..; AT is an adjustment
time set to create a fitted curve as shown in FIG. 10B (and may
range from, e.g., 1 ms to 1 s depending on the application in
order to balance acceptable error and power restrictions that
determine the sample rate and, in turn, the duration of the
sample time interval); T, is the time when Q,,;; ..5(t) (the
fitted tail curve) reaches Qmﬂjahbx(TQPeak—ATj; T, is the
time when Q,,;;_cas5(t) 1eaches Q. cans*(1 gpear—2AT); and
Targnapasar 15 the time when Q,,;; ..., (1) reaches the back-
ground basal flow rate.

After delivery is complete, the tail volume is stored in
memory along with the estimated (fitted) curve. This histori-
cal tail behavior may be used to predict the tail volume for
future boluses delivered from the same cartridge.

As discussed above, the priming stage is typically
employed to evacuate air from the fluid path of the device,
preventing air and/or debris from being injected into the tar-
get site, and also wets any sensors in the fluid path. Because
of'the faults that priming is designed to remediate, calibrating
during the priming stage may not be ideal. In some embodi-
ments, therefore, a non-therapeutic dose is dispensed by the
pump following priming, and this dose is used instead of or in
addition to the priming stage for calibration purposes. For
example, it may be necessary to use the non-therapeutic dose
for calibration if the sensor used therefor is in the fluid path
and must be wet to operate properly. As used herein, the term
“non-therapeutic dose” means a volume of drug less than a
therapeutic dose, and in some embodiments, a dose small
enough to avoid any therapeutic effect or clinically significant
effect.

It should be emphasized that, although the preceding dis-
cussion has focused on a single target dosage, this need not be
the case. Many medications, including monoclonal antibod-
ies, require dosages based on the patient’s weight or the
severity of the diseases. Accordingly, pumps in accordance
herewith may have the ability to deliver a range of target
dosages; in some embodiments, a dose-selection mechanism
is incorporated—for example, a dose-selection interface may
allow the user to select the dosage, which is programmed into
memory within the controller 112. This interface may be or
include a switch, dial, buttons, touch screen, or a variety of
user-interface components. The dosage may also be pre-set
by the manufacturer, clinician, pharmacist, or other non-pa-
tient entity, and locked for security purposes.
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Certain embodiments of the present invention were
described above. It is, however, expressly noted that the
present invention is not limited to those embodiments, but
rather the intention is that additions and modifications to what
was expressly described herein are also included within the
scope of the invention. Moreover, it is to be understood that
the features of the various embodiments described herein
were not mutually exclusive and can exist in various combi-
nations and permutations, even if such combinations or per-
mutations were not made express herein, without departing
from the spirit and scope of the invention. In fact, variations,
modifications, and other implementations of what was
described herein will occur to those of ordinary skill in the art
without departing from the spirit and the scope of the inven-
tion. As such, the invention is not to be defined only by the
preceding illustrative description.

What is claimed is:

1. A drug pump device comprising:

a drug reservoir;

an exit member for fluidically connecting the reservoir

with a drug injection site;

a sensor;

an electrolysis pump comprising a pump chamber in

mechanical communication with the drug reservoir via
an intervening displacement member, the electrolysis
pump being operable to exert a pressure to drive the
displacement member toward the exit member and
thereby force therethrough fluid in the drug chamber;
and

control circuitry for (i) storing a target delivered volume

over a specified time, (ii) operating the electrolysis
pump to force fluid from the drug reservoir into the exit
member in pulses having a time window defined by a
pump-start time when pumping begins and a pump-stop
time when the pump is shut off, the time window corre-
sponding to the target delivered volume at a predeter-
mined flow rate, (iii) based on signals received from the
sensor, measuring a volume of fluid through the exit
member resulting from a pulse, the measured volume
including a pulse volume through the exit member dur-
ing the pulse and an additional tail volume through the
exit member after the pulse, and (iv) adjusting the pulse
time window based on the measured pulse volume and
tail volume to conform collectively to the target deliv-
ered volume.

2. The device of claim 1, wherein the sensor is at least one
pressure sensor.

3. The device of claim 1, wherein the sensor is at least one
flow sensor.

4. The device of claim 1, wherein the sensor comprises at
least one flow sensor and at least one pressure sensor.

5. The device of claim 1, wherein the target delivered
volume corresponds to a single bolus, the control circuitry
causing measuring to occur during a priming stage and caus-
ing adjustment to occur during a delivery stage.

6. The device of claim 1, wherein the control circuitry
causes the target delivered volume to be dispensed through
the exit member over a sequence of time-separated pulses
occurring over a time interval, the control circuitry causing
measuring to occur during a first time interval and causing
adjustment to occur during a second time interval following
the first time interval.

7. The device of claim 6, wherein the adjustment is based
on the measured pulse volume and tail volume from a plural-
ity of pulses.
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8. The device of claim 1, wherein the intervening displace-
ment member comprises a piston, a diaphragm, a bladder, or
a plunger.

9. A method of controlling an actual delivery volume of
fluid in a drug pump device comprising a drug reservoir, an
exit member for fluidically connecting the reservoir with a
drug injection site, and an electrolysis pump operable to force
fluid from the drug reservoir into the exit member in pulses
each having a time window defined by a pump-start time
when pumping begins and a pump-stop time when the pump
is shut off, the time window corresponding to a target deliv-
ered volume at a predetermined flow rate, to conform to a
target delivery volume, the method comprising:

measuring a volume of fluid through the exit member

resulting from a pulse, the measured volume including
(1) a pulse volume through the exit member during the
pulse and (ii) an additional tail volume through the exit
member after the pulse; and

adjusting the pulse time window based on the measured

pulse volume and tail volume to conform collectively to
the target delivered volume.
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10. The method of claim 9, wherein the measurement is
made with at least one pressure sensor.

11. The method of claim 9, wherein the sensor is at least
one flow sensor.

12. The method of claim 9, wherein the target delivered
volume corresponds to a single bolus, the measuring step
occurring during a priming stage and the adjusting step occur-
ring during a delivery stage.

13. The method of claim 9, wherein the target delivered
volume is dispensed through the exit member over a sequence
of time-separated pulses occurring over a time interval, the
measuring step occurring during a first time interval and the
adjusting step occurring during a second time interval follow-
ing the first time interval.

14. The method of claim 13, wherein the adjusting step is
based on the measured pulse volume and tail volume from a
plurality of pulses.



